2x^2+6x-7912=0

Simple and best practice solution for 2x^2+6x-7912=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+6x-7912=0 equation:



2x^2+6x-7912=0
a = 2; b = 6; c = -7912;
Δ = b2-4ac
Δ = 62-4·2·(-7912)
Δ = 63332
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{63332}=\sqrt{4*15833}=\sqrt{4}*\sqrt{15833}=2\sqrt{15833}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{15833}}{2*2}=\frac{-6-2\sqrt{15833}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{15833}}{2*2}=\frac{-6+2\sqrt{15833}}{4} $

See similar equations:

| 3(x+5)+3=18 | | -3u+12=-7u+8 | | (x+33)+(2x)=90 | | (x+33)+x=90 | | 2y2-24y+64=0 | | 3.14*16h=218 | | x^2+(x+3)^2-89=0 | | -7=8(x) | | 2x2+9x+14=0 | | x^2+(x+3)^2=89 | | -7(4x-7)=-28x+49 | | -3(1-p)-6p=-6(P+1) | | 5-3(x+5)=5x-18 | | -9(u+9)=7u-33 | | 9y-18=2(y-2) | | 9n^2-9n-176=0 | | -6(u+1)=-3u-36 | | 9n^2-9n+176=0 | | 3x2+4=16 | | 1.6x-17.5-72= | | -3(1-p)-6p=(P+1) | | -4(x-2)=37 | | 3x2+4=14 | | -22=7(w-6)-5w | | 5v+30+2v=-12 | | 9x-1/x+5=4 | | 25-4(x-2)=37 | | 6x^2+8x=46 | | J-5-3j=7j+4 | | 1050=(x-12)(x+18)(6) | | |3-x|=2x | | 1.41=2^x |

Equations solver categories